skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Li, Xiang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 8, 2026
  2. Design decision-making under competition is a critical challenge in real-world engineering design. These challenges are compounded by bounded rationality, where cognitive limitations and imperfect information influence decision-making strategies. To address these issues, we develop a game-theoretic research platform to investigate team-based design under competition. This platform abstracts and simulates real-world competitive design scenarios through controlled experiments. It features a user-friendly interface to collect behavioral data, which supports the analysis of team and individual strategies. Additionally, we validated the platform through a pilot study, demonstrating its ability to capture realistic design features and generate meaningful insights into competitive design behaviors. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  3. Free, publicly-accessible full text available July 3, 2026
  4. The convergence behavior of Stochastic Gradient Descent (SGD) crucially depends on the stepsize configuration. When using a constant stepsize, the SGD iterates form a Markov chain, enjoying fast convergence during the initial transient phase. However, when reaching stationarity, the iterates oscillate around the optimum without making further progress. In this paper, we study the convergence diagnostics for SGD with constant stepsize, aiming to develop an effective dynamic stepsize scheme. We propose a novel coupling-based convergence diagnostic procedure, which monitors the distance of two coupled SGD iterates for stationarity detection. Our diagnostic statistic is simple and is shown to track the transition from transience stationarity theoretically. We conduct extensive numerical experiments and compare our method against various existing approaches. Our proposed coupling-based stepsize scheme is observed to achieve superior performance across a diverse set of convex and non-convex problems. Moreover, our results demonstrate the robustness of our approach to a wide range of hyperparameters. 
    more » « less
    Free, publicly-accessible full text available April 11, 2026
  5. Sankararaman, S (Ed.)
    Free, publicly-accessible full text available April 26, 2026
  6. Free, publicly-accessible full text available May 22, 2026
  7. Free, publicly-accessible full text available March 1, 2026
  8. Free, publicly-accessible full text available February 24, 2026
  9. In this work, we study the generalizability of diffusion models by looking into the hidden properties of the learned score functions, which are essentially a series of deep denoisers trained on various noise levels. We observe that as diffusion models transition from memorization to generalization, their corresponding nonlinear diffusion denoisers exhibit increasing linearity. This discovery leads us to investigate the linear counterparts of the nonlinear diffusion models, which are a series of linear models trained to match the function mappings of the nonlinear diffusion denoisers. Surprisingly, these linear denoisers are approximately the optimal denoisers for a multivariate Gaussian distribution characterized by the empirical mean and covariance of the training dataset. This finding implies that diffusion models have the inductive bias towards capturing and utilizing the Gaussian structure (covariance information) of the training dataset for data generation. We empirically demonstrate that this inductive bias is a unique property of diffusion models in the generalization regime, which becomes increasingly evident when the model's capacity is relatively small compared to the training dataset size. In the case that the model is highly overparameterized, this inductive bias emerges during the initial training phases before the model fully memorizes its training data. Our study provides crucial insights into understanding the notable strong generalization phenomenon recently observed in real-world diffusion models. 
    more » « less
    Free, publicly-accessible full text available December 25, 2025
  10. Free, publicly-accessible full text available March 1, 2026